Chemical force (TIGP nano-science 12/09/2009)

Free energy and chemical potential

Free energy and direction of reaction

Dissociation

Self-assembly of amphiphiles and interface

What is force and generalized forces?

- The variation of energy with respect to position F = -dU/dx (a single particle situation)
- The variation of system energy with respect to change of volume

$$P = -dE/dV$$

 The variation of system energy with respect to change of configuration

 The variation of system energy with respect to exchange of particle

$$\mu = -dE/dN$$

Free energy

Entropy

S

Enthalpy

H = U + PV

Helmholtz

F = U-TS

Gibbs

G = U+PV-TS=H-TS

Grand Ensemble

 $G = H - TS + \mu N$

Free Energy change and effective work

Theorem: At constant temperature and constant pressure, through reversible process, the change of free energy equals effective (non-expansive) work.

Free energy and chemical potential

$$G = G(T, P) \longrightarrow G(T, P, n_A, n_B, ...)$$

e.g. Phase equilibrium between water and vapor

Define
$$\mu_A = \left(\frac{\partial G}{\partial n_A}\right)_{T,P,R; \neq n_A}$$

Chemical potential: the change of free energy upon addition into or subtraction of a particle from the system.

Dependence of chemical potential on pressure

Ideal gas:

$$PV = RRT$$

 $dG = -SdT + VdP$

$$G(P_2) - G(P_1) = nRT ln\left(\frac{P_2}{P_1}\right)$$

 $G - G^\circ = nRT ln\left(\frac{P}{1atm}\right)$

G⁰: reference point; standard free energy

Divide by n

μ⁰: standard chemical potential

Species A

 P_{Δ} : partial pressure of A

By analogy
$$\mu_A$$
- μ_A^0 = RT * In (n_A)

Dissociation

Chemical equilibrium of reversible reactions

· Assembly and disassembly of molecules

Equilibrium constant and Free energy

Chemical potential and directionality of the chemical reaction

constant T and P

$$\frac{dn_A}{a} = \frac{dn_B}{b} = \frac{dn_C}{c} = \frac{dn_D}{d} = -\frac{dd}{d}$$

stoichiometry constraint

We know that if the reaction goes to the right, $d\alpha$ must be positive. We also know that if the reaction goes to right, dG must be negative.

Chemical equilibrium constant

Gibbs free energy of reactants: a ma + b mg

Gibbs free energy of products: cuc + d MD

Non-ideal system

Activity wefficient
$$V < 1$$

effective partial pressure $P_A \longrightarrow V_A P_A = a_A$

effective concentration $n_A \longrightarrow V_A n_A = a_A$

When concentration is low, γ is close to 1.

$$K = \frac{(n_c^{eg})^c (n_D^{eg})^d}{(n_A^{eg})^a (n_B^{eg})^b} \leftarrow \frac{(a_c^{eg})^c (a_D^{eg})^d}{(a_A^{eg})^a (a_B^{eg})^b}$$

Dependence of chemical equilibrium on temperature

$$K(T_1) \longrightarrow K(T_2)$$

$$\frac{d(G/T)}{dT} = \frac{H}{T^{2}}$$

$$\Rightarrow \frac{d(\Delta G/T)}{dT} = \frac{\Delta H^{\circ}}{T^{2}}$$

$$R \frac{d(\ln K)}{dT} = \frac{\Delta H^{\circ}}{T^{2}}$$

$$\Rightarrow \frac{d \ln K}{d(\frac{I}{T})} = \frac{\Delta H^{\circ}}{R}$$

Application to water

pH of water or buffer solution

We know
$$K_{25°c} = 10^{-14}$$

$$\Delta H_{25°c}^{\circ} = 55.84 \text{ KJ}$$

consult a biophysical text book

$$K_{39}^{\circ}c = 2.4 \times 10^{-14} \Rightarrow pH = -\log [H^{\dagger}]$$

$$= -\log (2.4 \times 10^{-14})^{\frac{1}{2}}$$

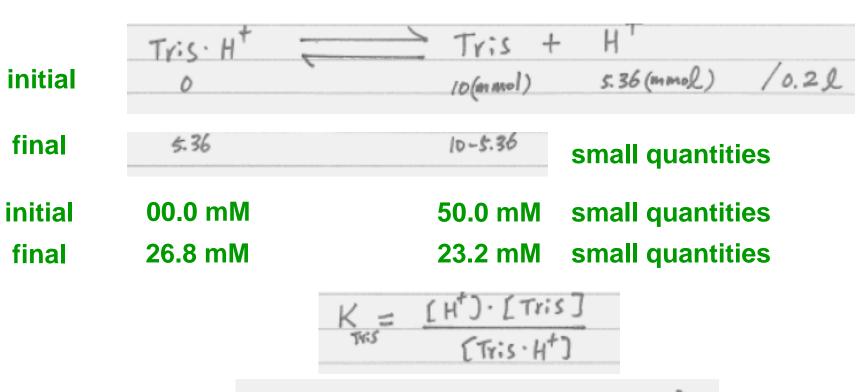
$$= -6.81$$

Application to Tris buffer

26.8 ml 0.2 M HCl

mixed with

Add water



change of pH by adding I mmol

strong acid or base to 1 L 50 mM Tris (20 C)

Solution for 20 C

$$-\log K_{Tr:S} = -\log (H^{+}) - \log \frac{[Tr:S]}{[Tr:S]}$$

$$= 11 \qquad \qquad 11 \qquad \qquad [Tr:S]$$

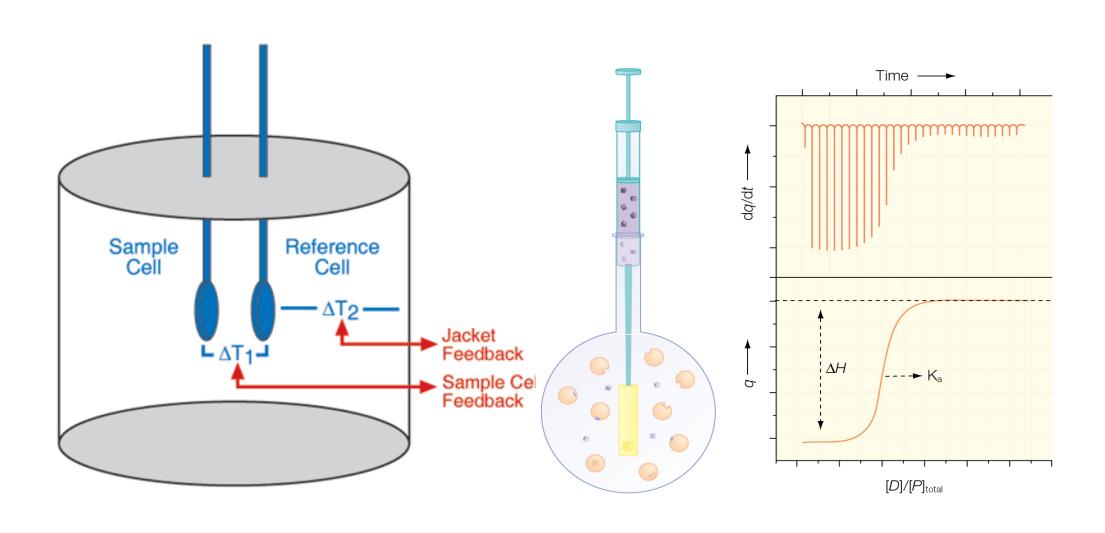
$$= PK_{Tr:S} \qquad PH$$

$$= 8.3 \qquad = 8.2 \qquad + 0.063$$

Solution for 37 C

$$PK_{Tris @ 37} = PK_{Tris @ 20} - (0.029)(37-20) = 7.8$$
8.3

7.8 7.7


Solution for buffering power

$$1 \text{ mmol HCl to 1.2. 50 mM Tris buffer}$$
 $[\text{Tris.H}^{\dagger}] = (26.8 + 1.0) \times 10^{-3} \text{ M}$
 $[\text{Tris.}] = (23.2 - 1.0) \times 10^{-3} \text{ M}$
 $pH \text{ still } \sim 8.2$

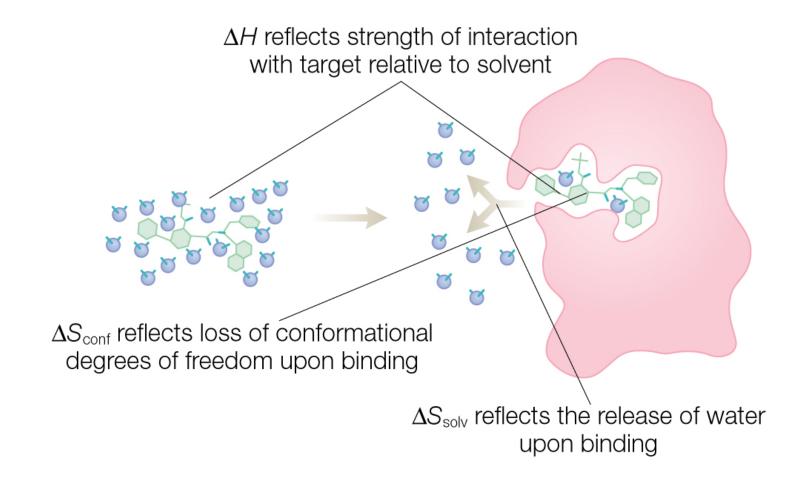
What if we do the same thing to 5 mM Tris instead of 50 mM Tris?

Isothermal Titration Calorimetry

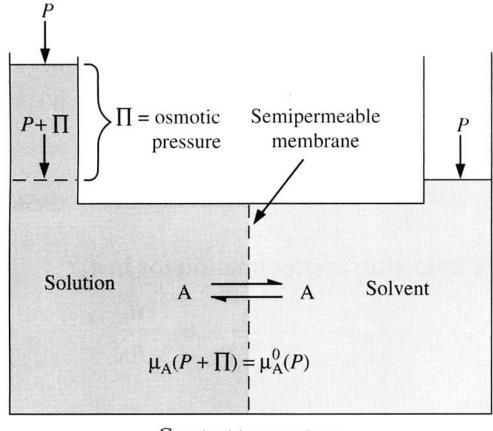
http://www.microcal.com/technology/itc-animation.asp

Information from ITC data

The thermal curve and the binding


$$\frac{1}{2} = \frac{0 \text{ cumpied sites}}{\text{total sites}}$$

$$= \frac{(PD)}{(P) + (D)}$$


$$= \frac{(RD)}{(P) +$$

The most important PChem formula for biochemists

$$\Delta G = -RT \ln Ka$$
 (strange or not ???)
$$\Delta G = \Delta H - T\Delta S$$
 (Figure 3.6 Allen P.57)

Osmotic pressure can be quantified

Constant temperature

◄ FIGURE 5.25

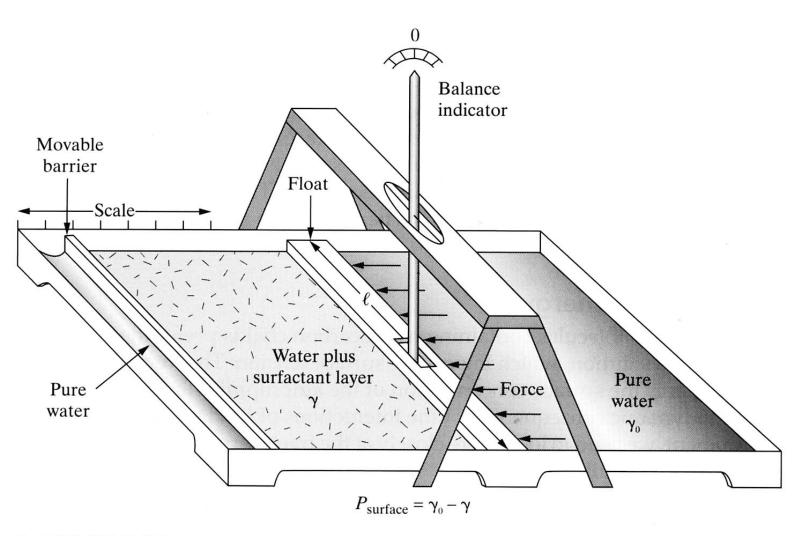
Osmometer showing conditions at equilibrium. A is a solvent molecule.

Deriving osmotic pressure

$$\mu_{A}$$
 (solution, $P+\Pi$) = μ_{A} (solvent, P)

 $\Rightarrow \mu_{A}$ (solution, $1+\Pi$) = μ_{A}° (set $P=1$ atm)

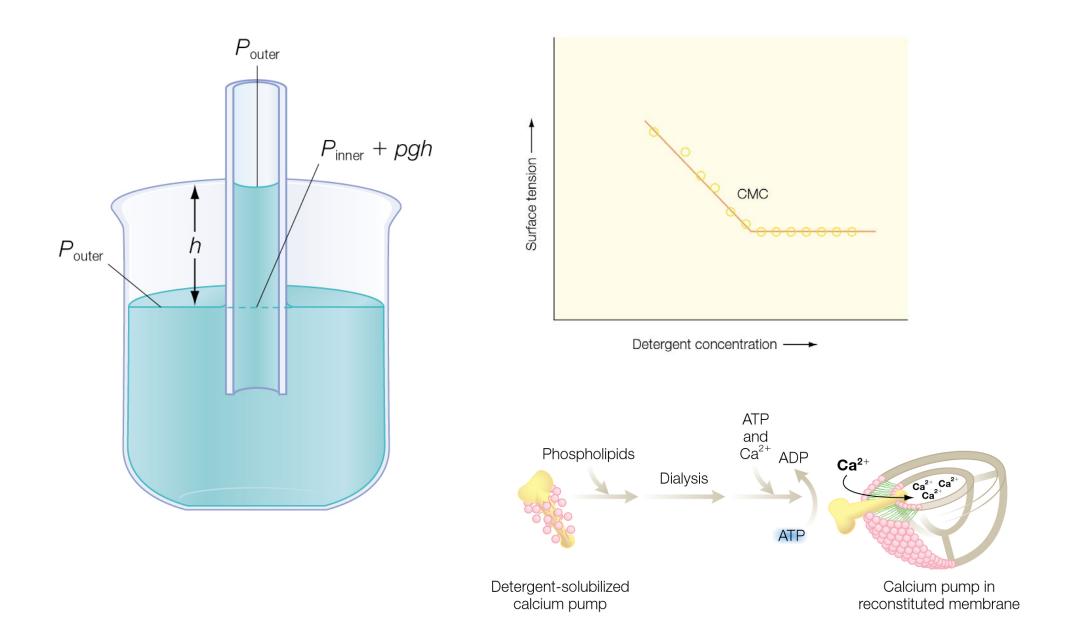
 μ_{A}° + RT ln α_{A}


Recall that the pressure dependence of Gibbs free energy gives that $G(P_{2}) - G(P_{1}) \cong V(P_{2}-P_{1})$
 $\mu_{A} - \mu_{A}^{\circ} = -\bar{V}_{A} \cdot \Omega$ (\bar{V}_{A} specific volume of solvent)

 $\mu_{A} - \mu_{A}^{\circ} = -\bar{V}_{A} \cdot \Omega$ (\bar{V}_{A} specific volume of solvent)

 $\mu_{A} - \mu_{A}^{\circ} = -\bar{V}_{A} \cdot \Omega$ (\bar{V}_{A} specific volume of solvent)

$$\Omega = \frac{RT}{r_A \bar{v}_A}$$
 $n_B = c \cdot RT$ C: concentration of solute


LB film measurement

▲ FIGURE 5.18

A Langmuir film balance measures surface tension. The force per unit length F/ℓ required to compress a surface containing a surfactant layer is known as the surface pressure P_{surface} . The float is connected to a torsion wire (not shown) to measure the force.

Critical Micelle Concentration (CMC)

